Existence of a renormalized solutions to a nonlinear system in Orlicz spaces

نویسندگان

چکیده

In this paper, we will be concerned with the existence of renormalized solutions to following parabolic-elliptic system {?u ?t + Au = ?(u)|??|2 in QT ? (0, T), ?div(?(u)??) divF(u) QT, u 0 on ?? u(?, 0) u0 ?, where ?div a(x, t, u,?u) is a Leray-Lions operator defined inhomogeneous Orlicz-Sobolev space W1,x LM(QT) into its dual, M N-function related growth a. does not satisfy ?2-condition, and F are two Carath?odory functions R.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Renormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces

The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega,  $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...

متن کامل

Existence of Weak-renormalized Solution for a Nonlinear System

We prove an existence result for a coupled system of the reactiondiffusion kind. The fact that no growth condition is assumed on some nonlinear terms motivates the search of a weak-renormalized solution.

متن کامل

Existence and multiplicity of positive solutions for a coupled system of perturbed nonlinear fractional differential equations

In this paper, we consider a coupled system of nonlinear fractional differential equations (FDEs), such that both equations have a particular perturbed terms. Using emph{Leray-Schauder} fixed point theorem, we investigate the existence and multiplicity of positive solutions for this system.

متن کامل

Existence Results for a Class of Nonlinear Parabolic Equations in Orlicz Spaces

is a LerayLions operator defined on W 1,x 0 LM (Ω), M is an appropriate N -function and which grows like M̄M(β K |∇u|) with respect to ∇u, but which is not restricted by any growth condition with respect to u (see assumptions (3.3)-(3.6)). The function Φ is just assumed to be continuous on R. Under these assumptions, the above problem does not admit, in general, a weak solution since the fields ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2022

ISSN: ['2406-0933', '0354-5180']

DOI: https://doi.org/10.2298/fil2215073a